3.82 score from hupso.pl for:
brenocon.com



HTML Content


Titlebrendan t. o'connor - umass amherst, computer science

Length: 53, Words: 8
Description pusty

Length: 0, Words: 0
Keywords pusty
Robots
Charset UTF-8
Og Meta - Title pusty
Og Meta - Description pusty
Og Meta - Site name pusty
Tytuł powinien zawierać pomiędzy 10 a 70 znaków (ze spacjami), a mniej niż 12 słów w długości.
Meta opis powinien zawierać pomiędzy 50 a 160 znaków (łącznie ze spacjami), a mniej niż 24 słów w długości.
Kodowanie znaków powinny być określone , UTF-8 jest chyba najlepszy zestaw znaków, aby przejść z powodu UTF-8 jest bardziej międzynarodowy kodowaniem.
Otwarte obiekty wykresu powinny być obecne w stronie internetowej (więcej informacji na temat protokołu OpenGraph: http://ogp.me/)

SEO Content

Words/Characters 1655
Text/HTML 38.22 %
Headings H1 1
H2 7
H3 0
H4 0
H5 0
H6 0
H1
brendan t. o'connor
H2
some recent talks
publications
software
recent and not-so-recent news
demos etc.
elsewhere on the internet
other o'connors
H3
H4
H5
H6
strong
b
i
em
Bolds strong 0
b 0
i 0
em 0
Zawartość strony internetowej powinno zawierać więcej niż 250 słów, z stopa tekst / kod jest wyższy niż 20%.
Pozycji używać znaczników (h1, h2, h3, ...), aby określić temat sekcji lub ustępów na stronie, ale zwykle, użyj mniej niż 6 dla każdego tagu pozycje zachować swoją stronę zwięzły.
Styl używać silnych i kursywy znaczniki podkreślić swoje słowa kluczowe swojej stronie, ale nie nadużywać (mniej niż 16 silnych tagi i 16 znaczników kursywy)

Statystyki strony

twitter:title pusty
twitter:description pusty
google+ itemprop=name pusty
Pliki zewnętrzne 2
Pliki CSS 0
Pliki javascript 2
Plik należy zmniejszyć całkowite odwołanie plików (CSS + JavaScript) do 7-8 maksymalnie.

Linki wewnętrzne i zewnętrzne

Linki 260
Linki wewnętrzne 24
Linki zewnętrzne 236
Linki bez atrybutu Title 259
Linki z atrybutem NOFOLLOW 0
Linki - Użyj atrybutu tytuł dla każdego łącza. Nofollow link jest link, który nie pozwala wyszukiwarkom boty zrealizują są odnośniki no follow. Należy zwracać uwagę na ich użytkowania

Linki wewnętrzne

brenocon@cs.umass.edu mailto:brenocon@cs.umass.edu
cv /brendan_oconnor_cv.pdf
research statement /research_statement_201311.pdf
short bio bio.html
map with directions (10 mb pdf) umass_cs_directions.pdf
research statement research_statement_201311.pdf
is a minority dialect “noisy text”?: social media nlp, analysis, and variation oconnor_wnut_acl2015_slides.pdf
bag of what? simple noun phrase extraction for text analysis handler2016phrases.pdf
mitextexplorer: linked brushing and mutual information for exploratory text data analysis /oconnor.mitextexplorer.illvi2014.pdf
learning to extract international relations from political context /oconnor+stewart+smith.irevents.acl2013.pdf
a latent variable model for geographic lexical variation. eisenstein_oconnor_smith_xing.emnlp2010.geographic_lexical_variation.pdf
from tweets to polls: linking text sentiment to public opinion time series. /oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
slides oconnor.icwsm2010.tweets_to_polls.pptx
tweetmotif: exploratory search and topic summarization for twitter. /oconnor_krieger_ahn.icwsm2010.tweetmotif.pdf
superficial data analysis: exploring millions of social stereotypes. oconnor+biewald.bd2009.ch17.bwproof.pdf
draft (with color) oconnor+biewald.bd2009.ch17.colordraft.pdf
cv /brendan_oconnor_cv.pdf
other misc utilities code
slides (pdf) uchicago_2012-11-16.pdf
jk 1995 justesonkatz1995.pdf
- /mte/
- eisenstein_oconnor_smith_xing.emnlp2010.geographic_lexical_variation.pdf
- facestat_pairwise_correlations.html

Linki zewnętrzne

@brendan642 http://twitter.com/brendan642
college of information and computer sciences https://www.cs.umass.edu/
google maps https://maps.google.com/maps?q=140+governors+drive+amherst,+ma&ll=42.39047,-72.527103&spn=0.019683,0.033345&oe=utf-8&client=firefox-a&hnear=140+governors+dr,+amherst,+massachusetts+01002&t=m&z=15
campus map https://go.umass.edu/map/
college of information and computer sciences https://www.cs.umass.edu/
computational social science institute http://www.cssi.umass.edu/
initiative in cognitive science http://blogs.umass.edu/cogsci/
data science http://ds.cs.umass.edu/
intelligent information retrieval http://ciir.cs.umass.edu/
shared calendar with busy times https://www.google.com/calendar/embed?src=i3kc8nabp533vp6ronf8n62d5c%40group.calendar.google.com
cs 585, introduction to natural language processing http://people.cs.umass.edu/~brenocon/inlp2016/
cs 690n, advanced natural language processing http://people.cs.umass.edu/~brenocon/anlp2017/
cs 688, probabilistic graphical models http://people.cs.umass.edu/~brenocon/pgm2016/
cs 585, introduction to natural language processing http://people.cs.umass.edu/~brenocon/inlp2015/
cs 691ma, social media analysis and computational social science http://people.cs.umass.edu/~brenocon/smacss2015/
cs 585, introduction to natural language processing http://people.cs.umass.edu/~brenocon/inlp2014/
slang lab http://slanglab.cs.umass.edu/
computational social science institute (cssi) website http://www.cssi.umass.edu/
this list of computation+language researchers and courses http://people.cs.umass.edu/~brenocon/complang_at_umass/
carnegie mellon university http://www.cmu.edu/
machine learning department http://www.ml.cmu.edu/
noah a. smith http://homes.cs.washington.edu/~nasmith
harvard iqss http://www.iq.harvard.edu/
facebook data science http://www.facebook.com/data
crowdflower / dolores labs http://crowdflower.com
"semantic" search at powerset http://brenocon.com/blog/2012/10/powersets-natural-language-search-system/
symbolic systems program http://symsys.stanford.edu
a little bit of nlp goes a long way: adding phrases to the term-document matrix using finite-state shallow parsing. http://brenocon.com/oconnor_textasdata2016.pdf
seventh annual new directions in analyzing text as data http://www.northeastern.edu/textasdata2016/
acl 2015 workshop on noisy user-generated text http://noisy-text.github.io/2015/
google scholar http://scholar.google.com/citations?user=v4lxxrqaaaaj
abram handler http://www.abehandler.com/
matthew j. denny http://www.mjdenny.com/
hanna wallach http://dirichlet.net/
nlp+css workshop at emnlp 2016 https://sites.google.com/site/nlpandcss/nlpcss-at-emnlp-2016
phrasemachine software http://slanglab.cs.umass.edu/phrasemachine/
slides (presenation at text as data conference, october 2016) http://brenocon.com/oconnor_textasdata2016.pdf
demographic dialectal variation in social media: a case study of african-american english https://arxiv.org/abs/1608.08868
su lin blodgett https://sites.google.com/site/sulinblodgett/
lisa green http://people.umass.edu/lisag/
john foley http://jjfiv.github.io/
james allan https://ciir.cs.umass.edu/~allan/
whi 2016 - workshop on human interpretability in machine learning https://sites.google.com/site/2016whi/
tpdp 2016 - theory and practice of differential privacy http://tpdp16.cse.buffalo.edu/
posterior calibration and exploratory analysis for natural language processing models http://arxiv.org/abs/1508.05154
khanh nguyen http://khanhxnguyen.com/
diffusion of lexical variation in online social media http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113114
jacob eisenstein http://people.csail.mit.edu/jacobe/
noah a. smith http://www.cs.cmu.edu/~nasmith/
eric p. xing http://www.cs.cmu.edu/~epxing/
arxiv:1210.5268 http://arxiv.org/abs/1210.5268
statistical text analysis for social science http://brenocon.com/phdthesis/
workshop on interactive language learning, visualization, and interfaces http://nlp.stanford.edu/events/illvi2014/
software website http://brenocon.com/mte/
cmu: arc-factored, discriminative semantic dependency parsing http://www.cs.cmu.edu/~nasmith/papers/thomson+etal.semeval14.pdf
sam thomson http://samthomson.com/
jeffrey flanigan http://www.cs.cmu.edu/~jmflanig/
david bamman http://www.cs.cmu.edu/~dbamman
jesse dodge http://www.cs.cmu.edu/~jessed/
swabha swayamdipta http://www.cs.cmu.edu/~sswayamd/
nathan schneider http://www.cs.cmu.edu/~nschneid
chris dyer http://www.cs.cmu.edu/~cdyer
noah a. smith http://www.cs.cmu.edu/~nasmith
brandon m. stewart http://scholar.harvard.edu/bstewart
noah a. smith http://www.cs.cmu.edu/~nasmith
poster, slides, appendix, software http://brenocon.com/irevents/
learning latent personae of film characters http://www.cs.cmu.edu/~dbamman/pubs/pdf/bamman+oconnor+smith.acl13.pdf
david bamman http://www.cs.cmu.edu/~dbamman
noah a. smith http://www.cs.cmu.edu/~nasmith
data http://www.ark.cs.cmu.edu/personas/
improved part-of-speech tagging for online conversational text with word clusters http://www.ark.cs.cmu.edu/tweetnlp/owoputi+etal.naacl13.pdf
brendan o’connor http://brenocon.com/
chris dyer http://www.cs.cmu.edu/~cdyer/
kevin gimpel http://www.cs.cmu.edu/~kgimpel/
nathan schneider http://www.cs.cmu.edu/~nschneid/
noah a. smith http://www.cs.cmu.edu/~nasmith/
software and data http://www.ark.cs.cmu.edu/tweetnlp/
arkref: a rule-based coreference resolution system. http://arxiv.org/abs/1310.1975
michael heilman http://www.cs.cmu.edu/~mheilman/
arxiv:1310.1975 http://arxiv.org/abs/1310.1975
learning frames from text with an unsupervised latent variable model http://arxiv.org/abs/1307.7382
arxiv:1307.7382 http://arxiv.org/abs/1307.7382
a framework for (under)specifying dependency syntax without overloading annotators http://www.cs.cmu.edu/~nschneid/fudg.pdf
nathan schneider http://www.cs.cmu.edu/~nschneid/
naomi saphra http://speak.clsp.jhu.edu/people/nsaphra/
david bamman http://www.cs.cmu.edu/~dbamman/
manaal faruqui http://www.cs.cmu.edu/~mfaruqui/
noah a. smith http://www.cs.cmu.edu/~nasmith/
chris dyer http://www.cs.cmu.edu/~cdyer/
jason baldridge http://www.jasonbaldridge.com/
linguistic annotation workshop http://www.linguistics.ruhr-uni-bochum.de/law7-id/
[extended version arxiv:1306:2091] http://arxiv.org/abs/1306.2091
censorship and deletion practices in chinese social media http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3943/3169
david bamman http://www.cs.cmu.edu/~dbamman
brendan o'connor http://brenocon.com
noah a. smith http://www.cs.cmu.edu/~nasmith
[web] http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3943/3169
[pdf] http://brenocon.com/censorship.bamman+oconnor+smith.fm2012.pdf
bbc http://www.bbc.co.uk/news/technology-17313793
new scientist http://www.newscientist.com/article/dn21553-revealed-how-china-censors-its-social-networks.html
computational text analysis for social science: model assumptions and complexity http://brenocon.com/oconnor+bamman+smith.nips2011css.text_analysis.pdf
brendan o'connor http://brenocon.com
david bamman http://www.cs.cmu.edu/~dbamman
noah a. smith http://www.cs.cmu.edu/~nasmith
predicting a scientific community's response to an article http://www.cs.cmu.edu/~nasmith/papers/yogatama+heilman+oconnor+dyer+routledge+smith.emnlp11.pdf
dani yogatama http://www.cs.cmu.edu/~dyogatam
michael heilman http://www.cs.cmu.edu/~mheilman
chris dyer http://www.cs.cmu.edu/~cdyer
bryan r. routledge http://sulawesi.gsia.cmu.edu/bryan_routledge.html
noah a. smith http://www.cs.cmu.edu/~nasmith
emnlp 2011 http://conferences.inf.ed.ac.uk/emnlp2011/
part-of-speech tagging for twitter: annotation, features, and experiments http://www.ark.cs.cmu.edu/tweetnlp/gimpel+etal.acl11.pdf
kevin gimpel http://www.cs.cmu.edu/~kgimpel/
nathan schneider http://www.cs.cmu.edu/~nschneid/
dipanjan das http://www.cs.cmu.edu/~dipanjan/
daniel mills http://www.cs.cmu.edu/~dpmills/
jacob eisenstein, michael heilman, dani yogatama, jeffrey flanigan and noah a. smith. http://people.csail.mit.edu/jacobe/
michael heilman http://www.cs.cmu.edu/~mheilman/
dani yogatama http://www.cs.cmu.edu/~dyogatam/
noah a. smith http://www.cs.cmu.edu/~nasmith/
acl-2011 http://www.acl2011.org/
data and software http://www.ark.cs.cmu.edu/tweetnlp/
a mixture model of demographic lexical variation http://www.cc.gatech.edu/~jeisenst/papers/nipsws2010.pdf
jacob eisenstein http://people.csail.mit.edu/jacobe/
eric p. xing http://www.cs.cmu.edu/~epxing/
noah a. smith http://www.cs.cmu.edu/~nasmith/
workshop on machine learning and social computing http://mlg.cs.purdue.edu/doku.php?id=mlsc2010
jacob eisenstein http://people.csail.mit.edu/jacobe/
noah a. smith http://www.cs.cmu.edu/~nasmith/
eric p. xing http://www.cs.cmu.edu/~epxing/
emnlp 2010 http://www.lsi.upc.edu/events/emnlp2010/
appendix http://www.cc.gatech.edu/~jeisenst/papers/emnlp2010_appendix.pdf
data http://www.ark.cs.cmu.edu/geotext/
new york times http://www.nytimes.com/2011/10/30/opinion/sunday/twitterology-a-new-science.html
all things considered http://www.npr.org/2011/01/18/133024500/you-have-an-accent-even-on-twitter
bbc http://www.bbc.co.uk/news/technology-12381912
washington post http://voices.washingtonpost.com/blog-post/2011/01/twitter_shows_accents_are_aliv.html
wall street journal http://topics.wsj.com/article/sb20001424052748704364004576132671193830818.html
associated press http://www.cbsnews.com/stories/2011/01/11/tech/main7234811.shtml
new scientist http://www.newscientist.com/article/dn19936-social-networks-create-their-own-regional-dialects.html
san francisco chronicle http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2011/01/09/bujb1h64kh.dtl
ars technica http://arstechnica.com/science/news/2011/01/koo-af-yinz-regional-us-slang-thrives-on-twitter.ars
la weekly http://blogs.laweekly.com/informer/2011/01/los_angeles_tweets_dialect.php
msnbc http://cosmiclog.msnbc.msn.com/_news/2011/01/07/5786357-how-tweets-reveal-where-youre-from
ramnath balasubramanyan http://www.cs.cmu.edu/~rbalasub/
bryan r. routledge http://sulawesi.gsia.cmu.edu/
noah a. smith http://www.cs.cmu.edu/~nasmith/
icwsm-2010 http://www.icwsm.org/2010/
video http://videolectures.net/icwsm2010_oconnor_ftp/
pittsburgh tribune-review http://www.pittsburghlive.com/x/pittsburghtrib/news/pittsburgh/s_680462.html
mashable http://mashable.com/2010/05/11/twitter-data-opinion-polls/
ars technica http://arstechnica.com/science/news/2010/05/twitter-a-decent-stand-in-for-public-opinion-polls.ars
new scientist http://www.newscientist.com/article/mg20627655.800-blogs-and-tweets-could-predict-the-future.html
cnn tech http://www.cnn.com/2010/tech/05/11/twitter.polls/
fast company http://www.fastcompany.com/1644236/carnegie-mellon-study-could-show-one-way-forward-for-twitters-monetization-question
science now http://news.sciencemag.org/sciencenow/2010/05/twitter-as-good-as-a-telephone-s.html
economic times http://economictimes.indiatimes.com/infotech/internet/twitter-sentiments-may-soon-replace-public-opinion-polls/articleshow/5921146.cms
bbc radio 5 http://www.bbc.co.uk/blogs/podsandblogs/2010/05/neighbours_sentiments_and_sket.shtml
michel krieger http://www.mkrieger.org/
david ahn http://www.linkedin.com/pub/david-ahn/3/bb0/464
icwsm-2010 http://www.icwsm.org/2010/
demo http://tweetmotif.com
lukas biewald http://lukasbiewald.com
beautiful data http://oreilly.com/catalog/9780596157111/
toby segaran http://kiwitobes.com/
jeff hammerbacher http://jeffhammerbacher.com/
blog post http://brenocon.com/blog/2009/08/beautiful-data-book-chapter/
data http://data.doloreslabs.com/
cheap and fast — but is it good? evaluating non-expert annotations for natural language tasks. http://brenocon.com/snow+oconnor+jurafsky+ng_emnlp2008.pdf
rion snow http://ai.stanford.edu/~rion/
daniel jurafsky http://www.stanford.edu/~jurafsky/
andrew y. ng http://ai.stanford.edu/~ang/
emnlp-2008 http://conferences.inf.ed.ac.uk/emnlp08/
blog post http://blog.crowdflower.com/2008/09/amt-fast-cheap-good-machine-learning/
slides http://www.slideshare.net/guest60b48a/rls-for-emnlp-2008-presentation
data http://nlpannotations.googlepages.com/
google scholar http://scholar.google.com/citations?user=v4lxxrqaaaaj
mitextexplorer http://brenocon.com/mte/
tweetnlp http://www.ark.cs.cmu.edu/tweetnlp/
arkref http://www.ark.cs.cmu.edu/arkref/
parseviz http://brenocon.com/parseviz/
tsvutils https://github.com/brendano/tsvutils
thesis http://brenocon.com/phdthesis/
university of michigan school of information https://www.si.umich.edu/
courant institute http://www.cims.nyu.edu/
center for data science http://cds.nyu.edu/
allen institute for artificial intelligence http://www.allenai.org/
information school, university of washington http://ischool.uw.edu/
slides http://brenocon.com/uw_201402.pdf
abstract https://ischool.uw.edu/events/invited-talk-brendan-oconnor
microsoft research, new york city http://research.microsoft.com/en-us/labs/newyork/
computer science, umass amherst https://www.cs.umass.edu/
information science, cornell university http://infosci.cornell.edu/
toyota technological institute at chicago http://www.ttic.edu/
wharton statistics https://statistics.wharton.upenn.edu/
slides http://brenocon.com/wharton_2014-01-15.pdf
abstract http://brenocon.com/wharton_seminar_announcement_201401.pdf
clip colloquium https://wiki.umiacs.umd.edu/clip/index.php/events
[slides] http://brenocon.com/maryland%20talk%202013-10-09.pdf
abstract https://gist.github.com/5016854
computational social science workshop http://cas.uchicago.edu/workshops/compsocsci/
video http://www.youtube.com/watch?v=xv0mnqhvwji
machine learning and friends lunch http://people.cs.umass.edu/~mlfriend/
computational social science seminar http://www.cssi.umass.edu/seminars.html
slides (pdf) http://brenocon.com/umass_amherst_2012-10-04.pdf
american association for public opinion research http://en.wikipedia.org/wiki/american_association_for_public_opinion_research
slides (ppt) http://brenocon.com/aapor%202012%20-%20oconnor%20-%20tweets%20to%20polls%20-%20aapor%20panel.ppt
new faces in political methodology v http://qssi.psu.edu/newfaces.html
tweetmotif http://tweetmotif.com
david ahn http://www.linkedin.com/pub/david-ahn/3/bb0/464
michel krieger http://en.wikipedia.org/wiki/mike_krieger
doug wilson http://doougle.net/
doug's blog post http://jag.lcc.gatech.edu/blog/2009/01/palinspeakcom.html
twitter http://twitter.com/brendan642
facebook http://www.facebook.com/brenocon
linkedin http://www.linkedin.com/in/brendano
github http://github.com/brendano
gists http://gist.github.com/brendano
hacker news http://news.ycombinator.com/user?id=brendano
quora http://www.quora.com/brendan-o'connor
so http://stackoverflow.com/users/86684/brendan-oconnor
crowdflower blog http://web.archive.org/web/20101229130544/http://blog.crowdflower.com/author/brendano/
my blog http://brenocon.com/blog/
my pgp key https://brenocon.com/45cc2745.asc
the computer security researcher http://ussjoin.com/
the journalist http://www.brendan-oconnor.com/
the mechanical engineering professor https://www.mae.ncsu.edu/oconnor/
the irish media personality http://en.wikipedia.org/wiki/brendan_o'connor_(media_personality)
the australian politician http://en.wikipedia.org/wiki/brendan_o'connor_(politician)
the u.s. army sergeant major http://en.wikipedia.org/wiki/brendan_o'connor_(united_states_army)
etc. https://www.google.com/search?q=brendan+o'connor
maureen o'connor http://maureenoco.com/
- http://www.pittsburghlive.com/x/pittsburghtrib/news/pittsburgh/s_680462.html
- http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3943/3169
- http://web.archive.org/web/20101124074833/http://blog.crowdflower.com/2008/03/where-does-blue-end-and-red-begin/
- http://web.archive.org/web/20101229132352/http://blog.crowdflower.com/2008/08/wisdom-of-small-crowds-part-3-another-worker-visualization/

Zdjęcia

Zdjęcia 8
Zdjęcia bez atrybutu ALT 8
Zdjęcia bez atrybutu TITLE 8
Korzystanie Obraz ALT i TITLE atrybutu dla każdego obrazu.

Zdjęcia bez atrybutu TITLE

point_reyes.jpg
mte_hella_map.png
tribune_review_tweet_polls.jpg
chinese_censorship_termdel.png
pretty_map_with_east_canada.gif
facestat_pairwise_correlations.png
label-wheel2.gif
submission-durations-wide1.png

Zdjęcia bez atrybutu ALT

point_reyes.jpg
mte_hella_map.png
tribune_review_tweet_polls.jpg
chinese_censorship_termdel.png
pretty_map_with_east_canada.gif
facestat_pairwise_correlations.png
label-wheel2.gif
submission-durations-wide1.png

Ranking:


Alexa Traffic
Daily Global Rank Trend
Daily Reach (Percent)









Majestic SEO











Text on page:

brendan t. o'connor email: brenocon@cs.umass.edu twitter: @brendan642 cv, research statement, short bio assistant professor, college of information and computer sciences, university of massachusetts amherst office: room 348, computer science building, 140 governors drive (amherst, ma 01003-9264) map with directions (10 mb pdf), google maps, campus map i am an assistant professor in the college of information and computer sciences at university of massachusetts, amherst (since fall 2014). i am affiliated with the computational social science institute, the initiative in cognitive science, and the centers for data science and intelligent information retrieval. scheduling: see my shared calendar with busy times. somewhat though not totally always up-to-date. teaching, upcoming: fall 2016: cs 585, introduction to natural language processing. spring 2017: cs 690n, advanced natural language processing. teaching, current and past: spring 2016: cs 688, probabilistic graphical models. fall 2015: cs 585, introduction to natural language processing. spring 2015: cs 691ma, social media analysis and computational social science. fall 2014: cs 585, introduction to natural language processing. students: see the slang lab page. research: what can statistical text analysis tell us about society? i develop text analysis methods that can help answer social science questions. i'm interested in statistical machine learning and natural language processing, especially when informed by or applied to areas like political science or sociolinguistics. my work often uses text data from news and social media. see also my (oldish) research statement or publications below. if you are interested in getting involved in research, shoot me an email. there is a rich set of other faculty at umass interested in areas from computational social science to natural language processing. see the computational social science institute (cssi) website, and this list of computation+language researchers and courses. background: i finished my phd in 2014 from carnegie mellon university's machine learning department, where i was advised by noah a. smith. i have also been a visiting fellow at harvard iqss, and interned with the facebook data science team. before grad school, i worked on crowdsourced annotations at crowdflower / dolores labs, as well as "semantic" search at powerset. i was an undergrad and masters student in the stanford symbolic systems program (cognitive science, more or less). some recent talks a little bit of nlp goes a long way: adding phrases to the term-document matrix using finite-state shallow parsing. at the seventh annual new directions in analyzing text as data, october 15, 2016. panelist, "fairness and machine learning for educational practice" at ncme 2016 (the annual meeting of the national council on educational measurement, april 9, 2016, washington, d.c.). talk title: "opening the ml black box: why and what is my algorithm doing?" is a minority dialect “noisy text”?: social media nlp, analysis, and variation invited talk at acl 2015 workshop on noisy user-generated text publications (see also google scholar.) bag of what? simple noun phrase extraction for text analysis abram handler, matthew j. denny, hanna wallach, and brendan o'connor. nlp+css workshop at emnlp 2016. phrasemachine software slides (presenation at text as data conference, october 2016) demographic dialectal variation in social media: a case study of african-american english. su lin blodgett, lisa green, and brendan o'connor. proceedings of emnlp 2016. improving entity ranking for keyword queries. john foley, brendan o'connor, and james allan. forthcoming, proceedings of cikm 2016. visualizing textual models with in-text and word-as-pixel highlighting. abram handler, su lin blodgett, and brendan o'connor. at whi 2016 - workshop on human interpretability in machine learning (workshop at icml 2016). challenges of visualizing differentially private data. dan zhang, michael hay, gerome miklau and brendan o'connor at tpdp 2016 - theory and practice of differential privacy (workshop at icml 2016). posterior calibration and exploratory analysis for natural language processing models. khanh nguyen and brendan o'connor. proceedings of emnlp 2015. --> extended version with appendix --> --> mapping the geographical diffusion of new words. --> diffusion of lexical variation in online social media. jacob eisenstein, brendan o'connor, noah a. smith, and eric p. xing. plos-one, november 2014. also arxiv:1210.5268; an earlier version was from oct. 2012 and poster at nips 2012 workshop on social network and social media analysis. arxiv october 2012; poster at nips 2012 workshop on social network and social media analysis. --> thesis: statistical text analysis for social science. brendan o'connor. phd thesis, carnegie mellon university, 2014. mitextexplorer: linked brushing and mutual information for exploratory text data analysis. brendan o'connor. acl workshop on interactive language learning, visualization, and interfaces, june 2014. (proceedings of acl 2014.) software website cmu: arc-factored, discriminative semantic dependency parsing. sam thomson, brendan o'connor, jeffrey flanigan, david bamman, jesse dodge, swabha swayamdipta, nathan schneider, chris dyer, and noah a. smith. in semeval-2014 (proceedings of the international (coling) workshop on semantic evaluations, dublin, ireland, august 2014). learning to extract international relations from political context. brendan o'connor, brandon m. stewart, and noah a. smith. proceedings of acl 2013. poster, slides, appendix, software learning latent personae of film characters. david bamman, brendan o'connor, and noah a. smith. proceedings of acl 2013. data improved part-of-speech tagging for online conversational text with word clusters olutobi owoputi, brendan o’connor, chris dyer, kevin gimpel, nathan schneider and noah a. smith. proceedings of naacl 2013 software and data arkref: a rule-based coreference resolution system. brendan o'connor and michael heilman. arxiv:1310.1975, oct 2013. learning frames from text with an unsupervised latent variable model. brendan o'connor. arxiv:1307.7382, data analysis project report, machine learning department, cmu. july 2013. a framework for (under)specifying dependency syntax without overloading annotators. nathan schneider, brendan o’connor, naomi saphra, david bamman, manaal faruqui, noah a. smith, chris dyer, and jason baldridge. in linguistic annotation workshop, 2013. [extended version arxiv:1306:2091] censorship and deletion practices in chinese social media. david bamman, brendan o'connor, and noah a. smith. in first monday 17.3, march 2012. [web] [pdf] press coverage: bbc, new scientist, etc. computational text analysis for social science: model assumptions and complexity. brendan o'connor, david bamman, and noah a. smith. in nips workshop on comptuational social science and the wisdom of crowds, sierra nevada, spain, december 2011. predicting a scientific community's response to an article. dani yogatama, michael heilman, brendan o'connor, chris dyer, bryan r. routledge, and noah a. smith. in proceedings of emnlp 2011. part-of-speech tagging for twitter: annotation, features, and experiments. kevin gimpel, nathan schneider, brendan o'connor, dipanjan das, daniel mills, jacob eisenstein, michael heilman, dani yogatama, jeffrey flanigan and noah a. smith. in acl-2011 (short paper). data and software a mixture model of demographic lexical variation. brendan o'connor, jacob eisenstein, eric p. xing, and noah a. smith. in nips-2010 workshop on machine learning and social computing. a latent variable model for geographic lexical variation. jacob eisenstein, brendan o'connor, noah a. smith, and eric p. xing. in proceedings of emnlp 2010 (presentation). appendix data press coverage: new york times, all things considered, bbc, washington post, wall street journal, associated press, new scientist, san francisco chronicle, ars technica, la weekly, msnbc, etc. from tweets to polls: linking text sentiment to public opinion time series. brendan o'connor, ramnath balasubramanyan, bryan r. routledge, and noah a. smith. in icwsm-2010 (presentation). video, slides press coverage: pittsburgh tribune-review, mashable, ars technica, new scientist, cnn tech, fast company, science now, economic times, bbc radio 5 (at 13:00) and others. tweetmotif: exploratory search and topic summarization for twitter. brendan o'connor, michel krieger, and david ahn. in icwsm-2010 (demo track). demo superficial data analysis: exploring millions of social stereotypes. brendan o'connor and lukas biewald. in beautiful data, ed. toby segaran and jeff hammerbacher. o'reilly media. 2009. blog post, data, draft (with color) cheap and fast — but is it good? evaluating non-expert annotations for natural language tasks. rion snow, brendan o’connor, daniel jurafsky, and andrew y. ng. in emnlp-2008 (presentation). blog post, slides, data other papers on my cv or google scholar. software mitextexplorer: interactive exploration of text data and document covariates. tweetnlp: tokenization and part-of-speech tagging for twitter. arkref, a coreference resolution system. parseviz - quick and dirty parse tree/dependency visualization via graphviz. tsvutils for tab-separated data processing other misc utilities (commandline, r, python...) recent and not-so-recent news 2014 aug 19: thesis defense. mar 28: invited speaker, university of michigan school of information. mar 26: invited speaker, nyu courant institute and center for data science. feb 26: invited speaker, allen institute for artificial intelligence. feb 24-25: invited speaker, information school, university of washington. slides, abstract. feb 14: invited speaker, microsoft research, new york city. feb 10-11: invited speaker, computer science, umass amherst. feb 7: invited speaker, information science, cornell university. jan 27: invited speaker, toyota technological institute at chicago, university of chicago. jan 15, 2014: invited speaker, wharton statistics, university of pennsylvania. slides, abstract. 2013 oct 9, 2013: invited talk at univ. of maryland at college park, clip colloquium (host: philip resnik). [slides] summer 2013: attended socs, naacl, and acl. see publications list for presentations/posters. apr 9: thesis proposal has been proposed: "statistical text analysis for social science." mar 25: talk at mit (csail), ml tea --> mar 22: invited speaker, northeastern (lazer lab; host david lazer) feb 25: invited speaker, columbia nlp group (abstract) 2012 november 16, 2012: invited speaker, uchicago computational social science workshop seminar series (host: forest gregg) [video] [slides (pdf)] october 4, 2012: invited speaker, umass amherst machine learning and friends lunch and computational social science seminar (host: hanna wallach) [slides (pdf)] may 2012 - invited panelist at the american association for public opinion research conference, for the panel "survey responses vs. tweets: new choices for social measurement." talk: "from tweets to polls: linking text sentiment to public opinion time series." [slides (ppt)] april 2012 - invited speaker, new faces in political methodology v workshop, political science department, penn state. talk: "corpus analysis and unsupervised frame learning from text." demos etc. inactive demos tweetmotif for summarizing twitter topics. (with david ahn and michel krieger.) palinspeak - eliza meets n-grams meets tf/idf - politics chatbot. currently down. (with doug wilson.) doug's blog post about it. elsewhere on the internet twitter facebook linkedin github gists hacker news quora so writings: (2008) on the crowdflower blog (a.k.a. dolores labs) --> (2008) on the crowdflower blog (a.k.a. dolores labs) my blog my pgp key random links: jk 1995 other o'connors there are many brendan o'connors in the world. if this is the wrong webpage, you may be interested in another brendan o'connor – for example, the computer security researcher (seattle, washington, usa) the freelance journalist --> the journalist (new york, usa) the mechanical engineering professor (north carolina, usa) the irish media personality the australian politician the u.s. army sergeant major etc. my awesome sister, maureen o'connor, is a writer in new york.


Here you find all texts from your page as Google (googlebot) and others search engines seen it.

Words density analysis:

Numbers of all words: 1756

One word

Two words phrases

Three words phrases

and - 4.27% (75)
the - 2.56% (45)
for - 2.11% (37)
dan - 1.99% (35)
brendan - 1.71% (30)
o'connor - 1.59% (28)
social - 1.37% (24)
science - 1.37% (24)
text - 1.31% (23)
work - 1.08% (19)
data - 1.08% (19)
lin - 0.97% (17)
invited - 0.97% (17)
mit - 0.97% (17)
all - 0.85% (15)
analysis - 0.85% (15)
noah - 0.8% (14)
new - 0.8% (14)
speaker, - 0.8% (14)
workshop - 0.8% (14)
o'connor, - 0.8% (14)
2016 - 0.74% (13)
ng. - 0.68% (12)
learning - 0.68% (12)
with - 0.68% (12)
2014 - 0.63% (11)
smith. - 0.63% (11)
nlp - 0.63% (11)
are - 0.63% (11)
language - 0.57% (10)
proceedings - 0.57% (10)
2012 - 0.57% (10)
slides - 0.57% (10)
search - 0.57% (10)
media - 0.57% (10)
acl - 0.51% (9)
post - 0.51% (9)
from - 0.51% (9)
university - 0.51% (9)
2013 - 0.51% (9)
research - 0.46% (8)
--> - 0.46% (8)
processing - 0.46% (8)
david - 0.46% (8)
machine - 0.46% (8)
mar - 0.46% (8)
not - 0.46% (8)
natural - 0.46% (8)
time - 0.4% (7)
talk - 0.4% (7)
oct - 0.4% (7)
list - 0.4% (7)
information - 0.4% (7)
o'connor. - 0.4% (7)
model - 0.4% (7)
was - 0.4% (7)
computational - 0.4% (7)
blog - 0.34% (6)
see - 0.34% (6)
twitter - 0.34% (6)
emnlp - 0.34% (6)
demo - 0.34% (6)
other - 0.34% (6)
software - 0.34% (6)
feb - 0.34% (6)
ars - 0.34% (6)
public - 0.34% (6)
computer - 0.28% (5)
amherst - 0.28% (5)
variation - 0.28% (5)
eric - 0.28% (5)
institute - 0.28% (5)
lab - 0.28% (5)
poster - 0.28% (5)
can - 0.28% (5)
arxiv - 0.28% (5)
processing. - 0.28% (5)
2013. - 0.28% (5)
bamman, - 0.28% (5)
2014. - 0.23% (4)
word - 0.23% (4)
slides, - 0.23% (4)
host - 0.23% (4)
etc. - 0.23% (4)
2015 - 0.23% (4)
schneider - 0.23% (4)
2016. - 0.23% (4)
tea - 0.23% (4)
dani - 0.23% (4)
dyer, - 0.23% (4)
thesis - 0.23% (4)
annotation - 0.23% (4)
2010 - 0.23% (4)
[slides - 0.23% (4)
york - 0.23% (4)
chris - 0.23% (4)
nathan - 0.23% (4)
michael - 0.23% (4)
nips - 0.23% (4)
washington - 0.23% (4)
eisenstein, - 0.23% (4)
press - 0.23% (4)
jacob - 0.23% (4)
fall - 0.23% (4)
statistical - 0.23% (4)
what - 0.23% (4)
political - 0.23% (4)
science. - 0.23% (4)
also - 0.23% (4)
science, - 0.23% (4)
media. - 0.23% (4)
interested - 0.23% (4)
set - 0.23% (4)
map - 0.23% (4)
umass - 0.23% (4)
october - 0.23% (4)
schneider, - 0.17% (3)
school - 0.17% (3)
dependency - 0.17% (3)
coverage: - 0.17% (3)
585, - 0.17% (3)
semantic - 0.17% (3)
14: - 0.17% (3)
analysis. - 0.17% (3)
jan - 0.17% (3)
(host: - 0.17% (3)
apr - 0.17% (3)
25: - 0.17% (3)
news - 0.17% (3)
latent - 0.17% (3)
google - 0.17% (3)
scientist, - 0.17% (3)
post, - 0.17% (3)
spring - 0.17% (3)
(presentation). - 0.17% (3)
wall - 0.17% (3)
tweets - 0.17% (3)
opinion - 0.17% (3)
bbc - 0.17% (3)
professor - 0.17% (3)
jeff - 0.17% (3)
(with - 0.17% (3)
tell - 0.17% (3)
o’connor, - 0.17% (3)
tagging - 0.17% (3)
part-of-speech - 0.17% (3)
college - 0.17% (3)
smith, - 0.17% (3)
publications - 0.17% (3)
introduction - 0.17% (3)
panel - 0.17% (3)
national - 0.17% (3)
usa) - 0.17% (3)
data, - 0.17% (3)
recent - 0.17% (3)
some - 0.17% (3)
phrase - 0.17% (3)
dolores - 0.17% (3)
lexical - 0.17% (3)
2016) - 0.17% (3)
frame - 0.17% (3)
models - 0.17% (3)
crowdflower - 0.17% (3)
department, - 0.17% (3)
practice - 0.17% (3)
series - 0.17% (3)
version - 0.17% (3)
appendix - 0.17% (3)
exploratory - 0.17% (3)
now, - 0.11% (2)
seminar - 0.11% (2)
topic - 0.11% (2)
may - 0.11% (2)
icwsm-2010 - 0.11% (2)
labs) - 0.11% (2)
twitter. - 0.11% (2)
michel - 0.11% (2)
cognitive - 0.11% (2)
(a.k.a. - 0.11% (2)
fast - 0.11% (2)
o'connors - 0.11% (2)
series. - 0.11% (2)
key - 0.11% (2)
teaching, - 0.11% (2)
sentiment - 0.11% (2)
linking - 0.11% (2)
polls: - 0.11% (2)
many - 0.11% (2)
technica, - 0.11% (2)
2016: - 0.11% (2)
researcher - 0.11% (2)
2012: - 0.11% (2)
massachusetts - 0.11% (2)
2014). - 0.11% (2)
twitter: - 0.11% (2)
(2008) - 0.11% (2)
tweetmotif - 0.11% (2)
allen - 0.11% (2)
directions - 0.11% (2)
center - 0.11% (2)
panelist - 0.11% (2)
american - 0.11% (2)
26: - 0.11% (2)
talk: - 0.11% (2)
faces - 0.11% (2)
penn - 0.11% (2)
(pdf)] - 0.11% (2)
demos - 0.11% (2)
sciences - 0.11% (2)
abstract. - 0.11% (2)
2013: - 0.11% (2)
short - 0.11% (2)
ahn - 0.11% (2)
meets - 0.11% (2)
aug - 0.11% (2)
visualization - 0.11% (2)
parse - 0.11% (2)
assistant - 0.11% (2)
document - 0.11% (2)
doug - 0.11% (2)
scholar. - 0.11% (2)
16, - 0.11% (2)
15, - 0.11% (2)
times, - 0.11% (2)
extended - 0.11% (2)
icml - 0.11% (2)
2016). - 0.11% (2)
where - 0.11% (2)
differential - 0.11% (2)
mellon - 0.11% (2)
carnegie - 0.11% (2)
diffusion - 0.11% (2)
visualizing - 0.11% (2)
online - 0.11% (2)
phd - 0.11% (2)
this - 0.11% (2)
xing. - 0.11% (2)
november - 0.11% (2)
there - 0.11% (2)
research, - 0.11% (2)
(workshop - 0.11% (2)
been - 0.11% (2)
network - 0.11% (2)
abram - 0.11% (2)
april - 0.11% (2)
washington, - 0.11% (2)
dialect - 0.11% (2)
annual - 0.11% (2)
parsing. - 0.11% (2)
student - 0.11% (2)
noisy - 0.11% (2)
handler, - 0.11% (2)
facebook - 0.11% (2)
hanna - 0.11% (2)
annotations - 0.11% (2)
school, - 0.11% (2)
conference, - 0.11% (2)
demographic - 0.11% (2)
grad - 0.11% (2)
blodgett, - 0.11% (2)
you - 0.11% (2)
mitextexplorer: - 0.11% (2)
current - 0.11% (2)
graphical - 0.11% (2)
educational - 0.11% (2)
bbc, - 0.11% (2)
2015: - 0.11% (2)
models. - 0.11% (2)
2011. - 0.11% (2)
response - 0.11% (2)
yogatama, - 0.11% (2)
2014: - 0.11% (2)
heilman, - 0.11% (2)
bryan - 0.11% (2)
routledge, - 0.11% (2)
daniel - 0.11% (2)
flanigan - 0.11% (2)
variation. - 0.11% (2)
geographic - 0.11% (2)
workshop, - 0.11% (2)
linguistic - 0.11% (2)
linked - 0.11% (2)
areas - 0.11% (2)
interactive - 0.11% (2)
(proceedings - 0.11% (2)
website - 0.11% (2)
jeffrey - 0.11% (2)
statement - 0.11% (2)
international - 0.11% (2)
extract - 0.11% (2)
about - 0.11% (2)
variable - 0.11% (2)
kevin - 0.11% (2)
gimpel, - 0.11% (2)
naacl - 0.11% (2)
coreference - 0.11% (2)
resolution - 0.11% (2)
system. - 0.11% (2)
unsupervised - 0.11% (2)
journalist - 0.11% (2)
brendan o'connor - 1.42% (25)
noah a. - 0.8% (14)
invited speaker, - 0.8% (14)
brendan o'connor, - 0.74% (13)
a. smith. - 0.63% (11)
social science - 0.63% (11)
and noah - 0.57% (10)
proceedings of - 0.57% (10)
workshop on - 0.46% (8)
smith. i - 0.46% (8)
natural language - 0.46% (8)
social media - 0.46% (8)
smith. in - 0.4% (7)
machine learning - 0.4% (7)
brendan o'connor. - 0.4% (7)
text analysis - 0.34% (6)
university of - 0.34% (6)
computational social - 0.34% (6)
language processing. - 0.28% (5)
and brendan - 0.28% (5)
for social - 0.23% (4)
to natural - 0.23% (4)
and social - 0.23% (4)
interested in - 0.23% (4)
of emnlp - 0.23% (4)
jacob eisenstein, - 0.23% (4)
analysis for - 0.23% (4)
nathan schneider - 0.23% (4)
chris dyer, - 0.23% (4)
of acl - 0.17% (3)
eric p. - 0.17% (3)
o'connor, and - 0.17% (3)
usa) the - 0.17% (3)
tagging for - 0.17% (3)
brendan o’connor, - 0.17% (3)
data analysis - 0.17% (3)
a. smith, - 0.17% (3)
new scientist, - 0.17% (3)
part-of-speech tagging - 0.17% (3)
nathan schneider, - 0.17% (3)
learning and - 0.17% (3)
public opinion - 0.17% (3)
press coverage: - 0.17% (3)
text data - 0.17% (3)
blog post - 0.17% (3)
on the - 0.17% (3)
lexical variation - 0.17% (3)
smith. proceedings - 0.17% (3)
variation in - 0.17% (3)
585, introduction - 0.17% (3)
talk at - 0.17% (3)
of information - 0.17% (3)
in the - 0.17% (3)
data science - 0.17% (3)
social media. - 0.17% (3)
for twitter. - 0.11% (2)
with the - 0.11% (2)
26: invited - 0.11% (2)
for data - 0.11% (2)
for natural - 0.11% (2)
extended version - 0.11% (2)
science and - 0.11% (2)
time series. - 0.11% (2)
14: invited - 0.11% (2)
sentiment to - 0.11% (2)
linking text - 0.11% (2)
to polls: - 0.11% (2)
from tweets - 0.11% (2)
ars technica, - 0.11% (2)
variable model - 0.11% (2)
2016: cs - 0.11% (2)
invited talk - 0.11% (2)
slides, abstract. - 0.11% (2)
opinion time - 0.11% (2)
(a.k.a. dolores - 0.11% (2)
crowdflower blog - 0.11% (2)
dolores labs) - 0.11% (2)
blog (a.k.a. - 0.11% (2)
the crowdflower - 0.11% (2)
(2008) on - 0.11% (2)
and computer - 0.11% (2)
2012 - - 0.11% (2)
to public - 0.11% (2)
software a - 0.11% (2)
text sentiment - 0.11% (2)
polls: linking - 0.11% (2)
tweets to - 0.11% (2)
- invited - 0.11% (2)
and computational - 0.11% (2)
[slides (pdf)] - 0.11% (2)
2012: invited - 0.11% (2)
25: invited - 0.11% (2)
9: thesis - 0.11% (2)
lexical variation. - 0.11% (2)
2015: cs - 0.11% (2)
data and - 0.11% (2)
at nips - 0.11% (2)
su lin - 0.11% (2)
dyer, and - 0.11% (2)
emnlp 2016. - 0.11% (2)
2016 - - 0.11% (2)
network and - 0.11% (2)
on social - 0.11% (2)
2012 workshop - 0.11% (2)
media analysis. - 0.11% (2)
information and - 0.11% (2)
at icml - 0.11% (2)
social network - 0.11% (2)
nips 2012 - 0.11% (2)
poster at - 0.11% (2)
(workshop at - 0.11% (2)
smith, and - 0.11% (2)
icml 2016). - 0.11% (2)
o'connor. proceedings - 0.11% (2)
of the - 0.11% (2)
bamman, brendan - 0.11% (2)
jeffrey flanigan - 0.11% (2)
see also - 0.11% (2)
diffusion of - 0.11% (2)
analysis and - 0.11% (2)
routledge, and - 0.11% (2)
bryan r. - 0.11% (2)
michael heilman, - 0.11% (2)
dani yogatama, - 0.11% (2)
and the - 0.11% (2)
schneider, brendan - 0.11% (2)
text as - 0.11% (2)
research statement - 0.11% (2)
latent variable - 0.11% (2)
o'connor and - 0.11% (2)
coreference resolution - 0.11% (2)
the computational - 0.11% (2)
kevin gimpel, - 0.11% (2)
abram handler, - 0.11% (2)
text with - 0.11% (2)
college of - 0.11% (2)
noah a. smith. - 0.63% (11)
and noah a. - 0.57% (10)
a. smith. in - 0.4% (7)
computational social science - 0.34% (6)
natural language processing. - 0.28% (5)
and brendan o'connor. - 0.23% (4)
proceedings of emnlp - 0.23% (4)
smith. proceedings of - 0.17% (3)
and social media - 0.17% (3)
machine learning and - 0.17% (3)
noah a. smith, - 0.17% (3)
proceedings of acl - 0.17% (3)
statistical text analysis - 0.17% (3)
analysis for social - 0.17% (3)
brendan o'connor, and - 0.17% (3)
introduction to natural - 0.17% (3)
text analysis for - 0.17% (3)
585, introduction to - 0.17% (3)
in proceedings of - 0.11% (2)
(2008) on the - 0.11% (2)
kevin gimpel, nathan - 0.11% (2)
latent variable model - 0.11% (2)
public opinion time - 0.11% (2)
invited speaker, information - 0.11% (2)
text sentiment to - 0.11% (2)
14: invited speaker, - 0.11% (2)
to polls: linking - 0.11% (2)
tweets to polls: - 0.11% (2)
and computational social - 0.11% (2)
linking text sentiment - 0.11% (2)
to public opinion - 0.11% (2)
routledge, and noah - 0.11% (2)
bryan r. routledge, - 0.11% (2)
of information and - 0.11% (2)
smith. in nips - 0.11% (2)
brendan o'connor, noah - 0.11% (2)
for data science - 0.11% (2)
language processing. spring - 0.11% (2)
the computational social - 0.11% (2)
(workshop at icml - 0.11% (2)
for natural language - 0.11% (2)
o'connor. proceedings of - 0.11% (2)
a. smith, and - 0.11% (2)
o'connor, and noah - 0.11% (2)
eric p. xing. - 0.11% (2)
nips 2012 workshop - 0.11% (2)
on social network - 0.11% (2)
for social science. - 0.11% (2)
bamman, brendan o'connor, - 0.11% (2)
chris dyer, and - 0.11% (2)
david bamman, brendan - 0.11% (2)
crowdflower blog (a.k.a. - 0.11% (2)

Here you can find chart of all your popular one, two and three word phrases. Google and others search engines means your page is about words you use frequently.

Copyright © 2015-2016 hupso.pl. All rights reserved. FB | +G | Twitter

Hupso.pl jest serwisem internetowym, w którym jednym kliknieciem możesz szybko i łatwo sprawdź stronę www pod kątem SEO. Oferujemy darmowe pozycjonowanie stron internetowych oraz wycena domen i stron internetowych. Prowadzimy ranking polskich stron internetowych oraz ranking stron alexa.